Given a square matrix, calculate the absolute difference between the sums of its diagonals.

or example, the square matrix * arr* is shown below:

```
1 2 3
4 5 6
9 8 9
```

The left-to-right diagonal =** 1 + 5 +9 = 15**. The right to left diagonal =** 3 + 5 + 9 = 17**. Their absolute difference is **|15 – 17| = 2**.

**Function description**

Complete the * DiagonalDifference* function in the editor below.

diagonalDifference takes the following parameter:

*int arr[n][m]*: an array of integers

**Return**

*int*: the absolute diagonal difference

**Input Format**

The first line contains a single integer, * n*, the number of rows and columns in the square matrix

*.*

**arr**Each of the next

**lines describes a row,**

*n***, and consists of**

*arr*[*i*]**space-separated integers**

*n***.**

*arr*[*i*][*j*]**Constraints**

**-100 <=***arr*[*i*][*j*] <= 100

**Output Format**

Return the absolute difference between the sums of the matrix’s two diagonals as a single integer.

**Sample Input**

```
3
11 2 4
4 5 6
10 8 -12
```

**Sample Output**

`15`

**Explanation**

The primary diagonal is:

```
11
5
-12
```

Sum across the primary diagonal: 11 + 5 – 12 = 4

The secondary diagonal is:

```
4
5
10
```

Sum across the secondary diagonal: 4 + 5 + 10 = 19

Difference: |4 – 19| = 15

**Note:** |x| is the absolute value of x

## Diagonal Difference Hacker Rank Solution:

### Problem solution in C++ programming

int diagonalDifference(vector<vector<int>> arr) { size_t size = arr[0].size(); int sum{}; int i=0; for(const auto& vec : arr) sum+= (vec[size-1-i] - vec[i++]); return abs(sum); }

### Problem solution in JavaScript programming

function diagonalDifference(arr) { // Write your code here let first_diagonal = 0, second_diagonal = 0 let len = arr.length - 1 for(let i=0; i<arr.length; i++){ first_diagonal += arr[i][i]; second_diagonal += arr[i][len-i]; } let res = first_diagonal - second_diagonal return Math.abs(res) }

### Problem solution in Python programming

def diagonalDifference(arr): Write your code here first_diagonal = second_diagonal = 0 # Time: O(n) # Space: O(1) for i in range(len(arr)): first_diagonal += arr[i][i] second_diagonal += arr[i][len(arr) - 1 - i] return abs(first_diagonal - second_diagonal)